If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2-10b+5=0
a = 4; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·4·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{5}}{2*4}=\frac{10-2\sqrt{5}}{8} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{5}}{2*4}=\frac{10+2\sqrt{5}}{8} $
| 15+3x+6=90 | | x4-3x+1=0 | | r4+ 8= 10 | | 15+8+3x+6=90 | | 4-1x=7x+100 | | 84=4+1.2x | | v+32=9 | | 20=x÷2-10 | | c-263=7+7 | | 2x-3x-7=4x-10 | | C=37.98+25x | | -3+6x=4x+7 | | -1x+7=2x+4 | | x^2+14^x+45=0 | | 5566=35(p+36) | | 3(x+2)+24+90=180 | | 10-2(x-1)-5x=x-40-x | | 5x+4=6x+59 | | 1500x=7.25 | | 3+x7=52 | | x-2x-x=-10-4x+6 | | 1500x=120 | | 2x+3x+5+90=180 | | 5u2+9u–6=0 | | (x+2)(x-5)=6x+x^2-6 | | 4x-1x=7x+100 | | 5x-2/3+2=8 | | 1440=32(p+15) | | 9x=15+45 | | 15+8=3x+6 | | 1068=6(x+16) | | 7(8+d)=+d |